

D2C - Designed to Customer

Der Leitgedanke Designed to Customer beschreibt das Erfolgsrezept von REICH. Neben den Katalogprodukten erhalten unsere Kunden auf ihre Anforderungen hin entwickelte Kupplungen. Dabei greifen die Konstruktionen weitgehend auf modulare Bauteile zurück, um so effektive und effiziente Kundenlösungen anzubieten. Die spezielle Form der engen Zusammenarbeit mit unseren Partnern reicht von der Beratung, Entwicklung, Auslegung, Fertigung, Integration in bestehende Umgebungen bis hin zu kundenspezifischen Produktions- und Logistikkonzepten, sowie After-Sales-Service – und das weltweit. Dieses kundenorientierte Konzept gilt sowohl für Serienprodukte als auch für Entwicklungen in kleinen Losgrößen.

Zur Unternehmensphilosophie von REICH gehören maßgeblich die Faktoren Kundenzufriedenheit, Flexibilität, Qualität, Lieferfähigkeit und Anpassungsfähigkeit auf die Bedürfnisse unserer Kunden.

REICH liefert Ihnen nicht nur eine Kupplung, sondern eine Lösung: Designed to Customer – und das SIMPLY **POWERFUL.**

Erläuterung zur Kupplung

04 Allgemeine technische Beschreibung

05 Vorteile

06 Technischer Aufbau

07 Allgemeine technische Daten

08 Auswahl der Kupplungsgröße

11 Standard-Nabenverzahnung

12 Zulässiger Wellenversatz

13 Pumpenträgerflansch PTF

14 Erforderliche Daten für die Auswahl der Kupplungsgröße

Maßtabellen

09 Bauform RCT...F2

10 Bauform RCT...F2S

03/2020 RCT Produktkatalog | 03

Allgemeine technische Beschreibung

RCT

Verdrehsteife Flanschkupplung für Pumpenantriebe

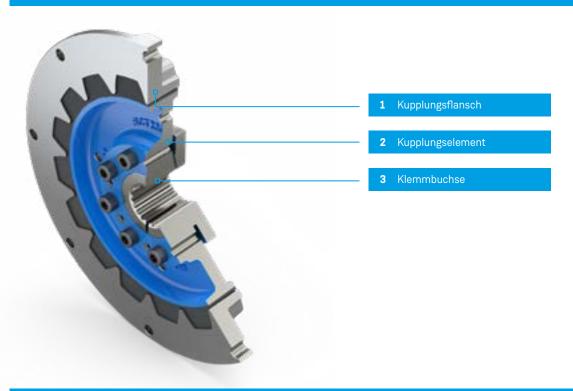
Mit der RCT-Kupplung bietet REICH eine optimale Antriebslösung zur Verbindung von Dieselmotoren mit Hydraulikpumpen. Durch die drehsteife Ausführung der RCT-Kupplung können kritische Resonanzen in den Bereich oberhalb der Betriebsdrehzahlen verschoben werden. Somit wird ein unterkritischer Betrieb des Antriebs ohne Durchfahren gefährlicher Drehschwingungsamplituden ermöglicht.

Ähnlich der seit Jahrzehnten bewährten ARCUSAFLEX®-Kupplung ist die RCT-Kupplung eine axial steckbare Flanschkupplung. Das Kupplungselement besteht aus einem robusten metallischen Innenkörper mit einer dünnen Gummibeschichtung, die Drehmomentstöße wirkungsvoll dämpft. Zudem können die bei geflanschten Hydraulikantrieben üblichen kleinen Axial-, Radial-und Winkelverlagerungen kompensiert werden.

Zahlreiche genormte Zahnprofile ermöglichen die spielfreie Klemmverbindung der RCT-Kupplung mit der Pumpenwelle, die Kupplungsflansche sind auf SAE-Schwungradabmessungen angepasst.

Ergänzend bietet REICH eine Vielzahl von Pumpenträgerflanschen an, mit denen die meisten Verbrennungsmotoren und Hydraulikpumpen verbunden werden können.

Auch für Sonderbauformen kann REICH dem Grundsatz "D2C - Designed to Customer" folgend eine optimale Lösung entwickeln.


Vorteile

Die wichtigsten Eigenschaften und Vorteile der RCT-Kupplung:

- → Hohe Drehsteifigkeit ermöglicht unterkritischen Betrieb
- Elastische Gummibeschichtung dämpft Schwingungen und Drehmomentstöße
- → Hohe Drehmomentkapazität, durchschlagsicher
- → Umgebungstemperaturen von -25°C bis +100°C
- → Kompakt, robust, wartungsfrei
- → Einfache Montage durch axiale Steckbarkeit
- → Spielfreie Welle-Nabe-Verbindung
- → Ausgleich von Axial-, Radial- und Winkelverlagerungen
- → Vielfältige Verzahnungsvarianten für Anschluss an Pumpenwelle
- Pumpenträgerflansche für fast jede Einbausituation

Technischer Aufbau

Aufbau und Werkstoffe der RCT

Werkstoff Übersicht

Teil-Nr.	Bezeichnung	Werkstoffe
1	Kupplungsflansch	Aluminium
2	Kupplungselement	Guss / Gummi
3	Klemmbuchse	Stahl

Allgemeiner technischer Hinweis

Die angegebenen technischen Daten beziehen sich nur auf die eigentlichen Kupplungen bzw. auf die entsprechenden Kupplungselemente. Es liegt in der Verantwortung der Anwender sicherzustellen, dass keinerlei Bauteile unzulässig beansprucht werden. Insbesondere sind vorhandene Anschlüsse, wie z.B. Schraubverbindungen, hinsichtlich der zu übertragenden Momente zu überprüfen. Gegebenenfalls sind weitere Maßnahmen, wie zum Beispiel zusätzliche Verstärkung durch Stifte, notwendig. Es liegt in der Verantwortung der Anwender für die ausreichende Dimensionierung der Wellen- und Passfederverbindung und/oder

der sonstigen Verbindungen, z.B. Spann- und Klemmverbindungen, zu sorgen. Alle Bauteile, die rosten können, sind im Standard korrosionsgeschützt.

REICH hat ein sehr umfangreiches Programm an Kupplungen, aus dem für fast alle Antriebe die geeigneten Kupplungen bzw. Kupplungssysteme gewählt werden können. Weiterhin können kundenspezifische Lösungen entwickelt und auch in Kleinserien bzw. als Prototypen gefertigt werden. Daneben existieren verschiedene Berechnungsprogramme, mit denen alle notwendigen Auslegungen durchgeführt werden können.

Allgemeine technische Daten

Standar	dbauform											
Kupplungs- größe	Nenn- drehmoment	Maximal- drehmoment	Dauer- wechseldreh-		Dynamische Drehfedersteifigkeit				Flansch- größe	Maximale Drehzahl		maler
			moment		C _T	dyn			SAE J620		radial	winkelig
	T _{KN}	T _{K max}	T _{KW (10 Hz)}		[Nm	/rad]		Ψ		n _{max}	ΔK_r	ΔK _w
	[Nm]	[Nm]	[Nm]	0,25 T _{KN}	0,5 T _{KN}	0,75 T _{KN}	1,0 T _{KN}			[min ⁻¹]	[mm]	[°]
									6,5	4200		
30	300	900	150	45	80	110	130	1,6	7,5	4200	±0,5	±0,5
									8	4200		
									8	4200		
65	650	1950	325	115	215	280	325	1,6	10	3600	±0,5	±0,5
									11,5	3500		
120	1200	3600	600	265	510	940	1110	1,6	10	3600	±0,5	±0,5
120	1200	3000	000	200	510	340	1110	1,0	11,5	3500	±0,5	±0,5
									10	3600		
230	2300	6900	1150	675	1220	1810	2130	1,6	11,5	3500	±0,5	±0,5
									14	3000		
500	5000	15000	2500	2200	4000	5900	6950	1,6	14	3000	±0,5	±0,5

Kupplu	ing und Pumi	penträgerflan	sch					
Kupplungsgröße	Flansch- ausführung	SAE Schwung- radanschluss	Gesamtlänge der Kupplung	mit Pumpen- trägerflansch	SAE Motorgehäuse- anschluss	SAE Pumpen- anschluss	Länge des Pumpenträger- flansch	2-Loch oder 4-Lochflansch
RCT 120	F2.	11,5.	63.	PTF	3 -	C.	45.	4

Bezeichnung: RCT 120 F2. 11,5. 63. PTF 3-C. 45. 4

₩ Bohrung			
Verzahnungsausführung nach ANSI B92.1 oder DIN 5480	Verzahnungsgröße	Anzahl der Zähne	Verzahnungslänge
ANSI B92.1	- 16/32 -	21T	L=54
DIN 5480	N45x2x30x	21	L=54

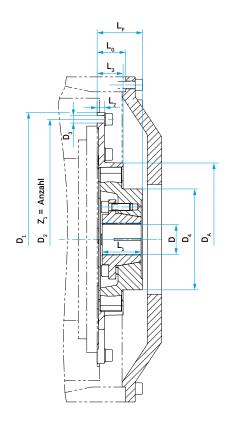
Bezeichnung: ANSI B92.1 - 16/32 - 21T L=54 oder DIN 5480 N45x2x30x21 L=54

03/2020 RCT Produktkatalog | **07**

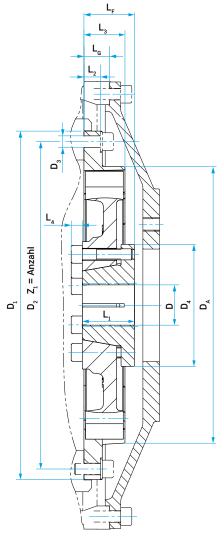
Auswahl der Kupplungsgröße

Üblicherweise erfolgt die Auslegung für RCT-Kupplungen nach Antriebsmoment. Dabei ist ein allgemeiner Sicherheitsfaktor von S=1,1 bis 1,3 zu berücksichtigen. Auf Anfrage kann eine drehschwingungstechnische Betrachtung durchgeführt werden.

Für die Auswahl der Kupplungsgröße sind folgende Bedingungen zu beachten:

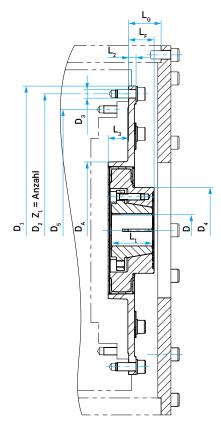

Das Nenndrehmoment der Kupplung T_{KN} muss unter Berücksichtigung der Auslegungsfaktoren mindestens so groß sein wie das Antriebsmoment.


Berechnung des **Antriebsmoments T**_{AN}

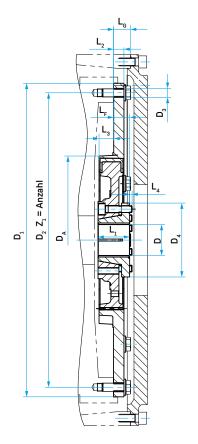

Mit der Antriebsleistung P_{AN} und der Drehzahl der Kupplung n_{AN} ist das Antriebsdrehmoment zu berechnen:

$$T_{AN}[Nm] = 9550 \frac{P_{AN}[kW]}{n_{AN}[min^{-1}]}$$

Bauform RCT...F2.



Lange Bauform Abb. 2


09

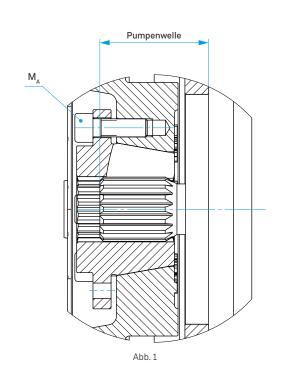
			Flans	schanscl	nluss													Masse
Kupplungs- größe	Abb.	SAE J 620	D ₁	D ₂	D ₃	Z ₁	D max.	D _A	D ₄	L ₁	L ₂	L ₃	L ₄	L _F	L _G	J ₁	J ₂	gesam
		3 020	[mm]	[mm]	[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kgm ²]		[kg]
		6,5	215,9	200,0	8,5	6								51,0	30,2	0,0027		2,1
30	1	7,5	241,3	222,3	8,5	8	40,0	137,0	76,0	44,0	10,0	30,0	_		30,2	0,0041	0,002	2,2
		8	263,5	244,5	10,5	6								±2,0	62,0	0,0046		2,2
		8	263,5	244,5	10,5	6								58,0	62,0	0,0060		4,0
65	1	10	314,3	295,3	10,5	8	46,0	167,0	105,0	50,0	10,0	34,0	-		53,8	0,0105	0,007	4,3
		11,5	352,4	333,4	10,5	8								±2,0	39,6	0,0153		4,5
100	4	10	314,3	295,3	10,5	8	F1.0	010.0	140.0	F40	10.0	20.0		63,0	53,8	0,0133	0.005	7,5
120	1	11,5	352,4	333,4	10,5	8	51,0	212,0	140,0	54,0	10,0	36,0	_	±2,0	39,6	0,0170	0,025	7,6
		10	314,3	295,3	10,5	8								45,5	53,8	0,0235		8,0
230	2	11,5	352,4	333,4	10,5	8	51,0	250,0	110,0	47,0	16,5	37,0	10,0		39,6	0,0392	0,04	8,6
		14	466,7	438,2	13,0	8								±1,5	25,4	0,1230		10,6
F00	0	1.4	4007	400.0	10.0	0	00.0	0570	150.0	47.0	10.5	40.0	10.0	47,0	05.4	0.1110	0.10	17.0
500	2	14	466,7	438,2	13,0	8	80,0	357,0	150,0	47,0	16,5	40,0	10,0	±3,0	25,4	0,1110	0,18	17,8

Bauform RCT...F2S.

Kurze Bauform Abb. 1

Kurze Bauform Abb. 2

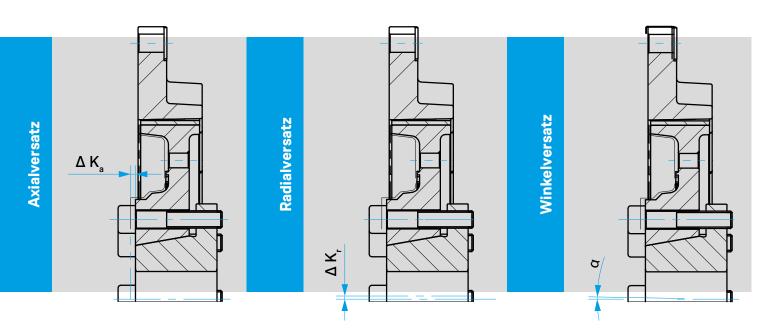
Kupplung	sdater																	
			Flan	schansc	nluss													Masse
Kupplungs-	Abb.	SAE	D ₁	D ₂	D ₃	Z_1	D	D _A	D ₄	L ₁	L ₂	L ₃	L ₄	L _F	L _G	J ₁	J ₂	gesam
größe		J620					max.									außen	innen	
			[mm]	[mm]	[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kgm ²]	[kgm ²]	[kg]
		6,5	215,9	200,0	8,5	6								28,0	30,2	0,0027		2,1
30	1	7,5	241,3	222,3	8,5	8	40,0	137,0	76,0	44,0	9,0	21,0	-		30,2	0,0041	0,002	2,2
		8	263,5	244,5	10,5	6								±2,0	62,0	0,0046		2,2
		8	263,5	244,5	10,5	6								31,0	62,0	0,0060		4,0
65	1	10	314,3	295,3	10,5	8	46,0	167,0	105,0	50,0	9,0	25,0	-		53,8	0,0105	0,007	4,3
		11,5	352,4	333,4	10,5	8								±2,0	39,6	0,0153		4,5
120	4	10	314,3	295,3	10,5	8	F1.0	212,0	140,0	E40	9,0	27.0		34,0	53,8	0,0133	0,025	7,5
120	1	11,5	352,4	333,4	10,5	8	51,0	212,0	140,0	54,0	9,0	27,0	-	±2,0	39,6	0,0170	0,025	7,6
		10	314,3	295,3	10,5	8								24,0	53,8	0,0235		8,0
230	2	11,5	352,4	333,4	10,5	8	51,0	250,0	110,0	47,0	15,5	21,5	≈3		39,6	0,0392	0,04	8,6
		14	466,7	438,2	13,0	8								±1,5	25,4	0,1230		10,6
500									auf Aı	nfrage								


🚺 Die kurze Bauform erfordert ausreichend Bauraum im Schwungrad; Machbarkeit muss kundenseitig überprüft werden

Standard-Nabenverzahnungen

Vorzugsverzahnungen

	Verzahnungsgröße		Ku	ıpplungsgrö	Зе	
		RCT 30	RCT 65	RCT 120	RCT 230	RCT 500
	16/32 - 9T	•				
	16/32 - 13T	•	•			
	16/32 - 15T	•	•	•	•	
ss 6	12/24 - 14T	•	•	•	•	
.1 cla	16/32 - 23T	•	•	•	•	
B92	12/24 - 17T	•	•	•	•	
ANSI B92.1 class 6	16/32 - 27T		•	•	•	•
	8/16 - 13T		•	•	•	•
	8/16 - 15T				•	•
	8/16 - 17T			•	•	•
	25x1,25x18	•	•			
	30x2x14	•	•	•	•	
	35x2x16	•	•	•	•	
- 9H	40x2x18	•	•	•	•	
480	45x2x21		•	•	•	
DIN 5480 - 9H	50x2x24			•	•	•
_	55x2x26				•	•
	60x2x28					•
	70x3x22					•

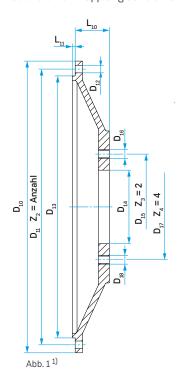

i Andere Zahnprofile und Fertigbohrung mit Nut auf Anfrage

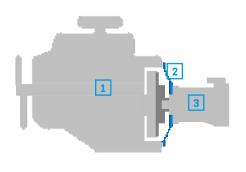
Anziehdrehmomente M _A						
Kupplungsgröße		RCT 30	RCT 65	RCT 120	RCT 230	RCT 500
Schraubengröße		M6	M8		M10	
Anziehdrehmomente M _A	[Nm]	14	35		69	

03/2020 RCT Produktkatalog | 11

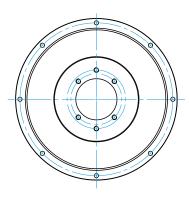
Zulässiger Wellenversatz

Die Zulässigkeit größerer Wellenverlagerungen hängt von verschiedenen Faktoren ab, wie Größe der Kupplung, Härte des Elementes, Betriebsdrehzahl und Drehmomentbelastung der Kupplung. Die nachfolgend aufgeführten Richtwerte beziehen sich auf eine Betriebsdrehzahl ≈ 1500 min⁻¹. Eine genaue Ausrichtung verhindert vorzeitigen Verschleiß des Gummielementes. Beachten Sie die Betriebsanleitung.




Technische Angaben							
Kupplungsgröße			RCT 30	RCT 65	RCT 120	RCT 230	RCT 500
Max. zulässiger Axialversatz	ΔK _a	[mm]	±2,0	±2,0	±2,0	±1,5	±3,0
Max. zulässiger Radialversatz	ΔK _r	[mm]	±0,5	±0,5	±0,5	±0,5	±0,5
Max. zulässiger Winkelversatz	α	[°]	±0,5	±0,5	±0,5	±0,5	±0,5

i Kurzzeitig auftretende größere Verlagerungen, z.B. beim An- und Abstellen eines Dieselmotors, sind zulässig. Weitere Angaben zur Montage finden sich in der Betriebsanleitung.

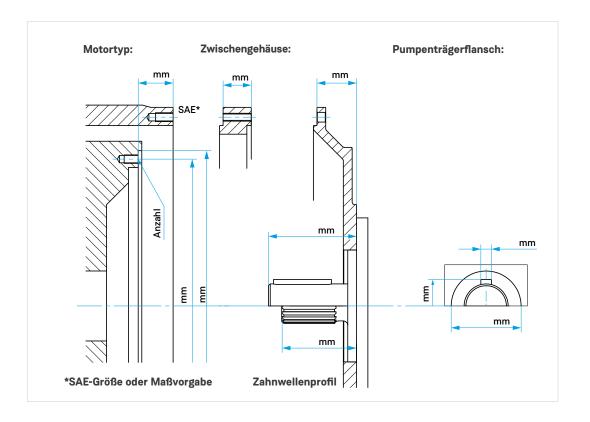

Pumpenträgerflansch PTF

Als Ergänzung zu den RCT-Kupplungen bietet REICH geeignete Pumpenträgerflansche an: Mit Hilfe des Pumpenträgerflansches wird das Pumpengehäuse am Schwungradgehäuse des Motors montiert. Die Leistungsübertragung erfolgt vom Motorschwungrad über die RCT-Kupplung auf die Pumpenwelle.

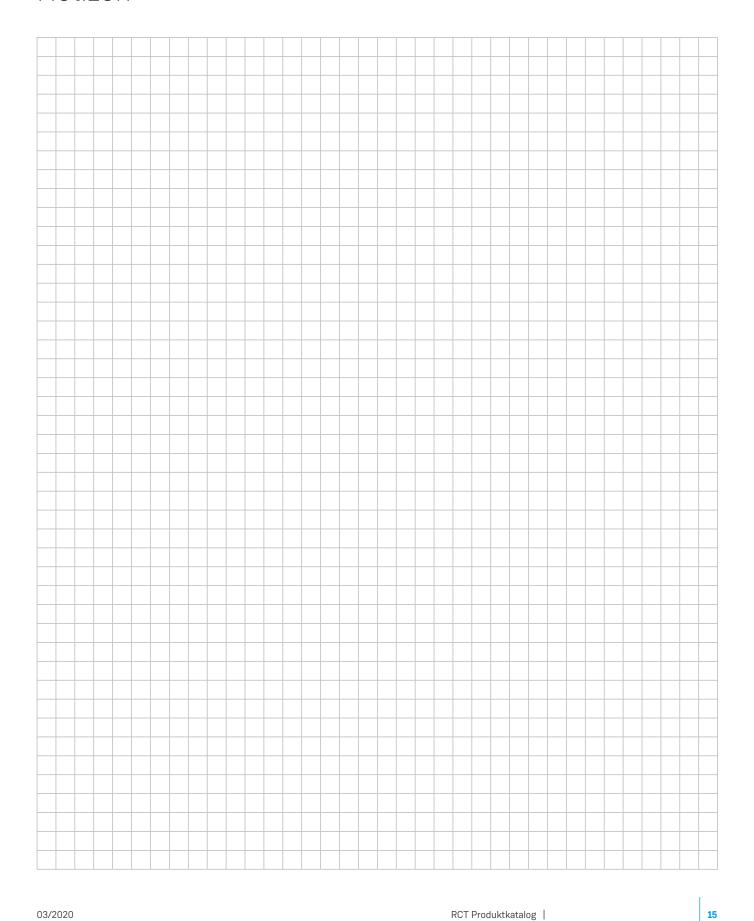
- **1** Motor
- 2 Pumpenträgerflansch
- 3 Hydraulikpumpe

2-4-Loch-Flansch

Flanschdat	en														
Motorgehäuse SAE J 617	Pumpenflansch SAE J 744		Moto	rseite			Pumpenseite								
SAL 0 017	2-4-Loch	D ₁₀	D ₁₁	Z_2	D ₁₂	D ₁₃	D ₁₄	D ₁₅	Z ₃	D ₁₆	D ₁₇	Z_4	D ₁₈	L ₁₀	L ₁₁
		[mm]	[mm]		[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		[mm]	[mm]	[mm]
5	A ²⁾	356,0	333,4	8	11,0	314,3	82,55	106,4	2		-	-			4,0
5	В	356,0	333,4	8	11,0	314,3	101,6	146,0	2		127,0	4			4,0
	A ²⁾						82,55	106,4	2	Ф	-	-	Φ		
4	В	404,0	381,0	12	11,0	362,0	101,6	146,0	2	gab	127,0	4	gab	_	4,0
	С						127,0	181,0	2	VOrg	161,9	4	Vorg	zfal	
	В						101,6	146,0	2	Kundenvorgabe	127,0	4	gemäß Kundenvorgabe	gemäß Einsatzfall	
3	С	451,0	428,6	12	11.0	409,6	127,0	181,0	2	Jun .	161,9	4	, oun	Ein	4,0
3	D	451,0	428,0	12	11,0	409,6	152,4	228,6	2	ά 7	228,6	4	Α	näß	4,0
	E						165,1	317,5	2	gemäß l	317,5	4	mä	gen	
	С						127,0	181,0	2	90	161,9	4		90	
2	D	489,0	466,7	12	11,0	447,7	152,4	228,6	2	Gewinde	228,6	4	Gewinde	Länge	5,0
	Е						165,1	317,5	2	ew	317,5	4	ew		
	С						127,0	181,0	2	9	161,9	4	9		
1	D	552,0	530,2	12	12,0	511,2	152,4	228,6	2		228,6	4			5,0
	Е						165,1	317,5	2		317,5	4			


- i) 1) Pumpenträgerflansch/Kontur ggf. abweichend 2) nur 2-Loch-Flansch
- i Die Auswahl des Pumpenträgerflansches und der RCT-Kupplung muss durch REICH in Hinblick auf die gegebene Einbausituation des Pumpenantriebs überprüft werden.

Erforderliche Daten für die Auswahl der Kupplungsgröße


Motorseite:	
1. Motortyp:	
2. Motorleistung: P	[kW]
3. Motordrehzahl: n	[min ⁻¹]
4. Reihen- / V-Motor: R / V	(Winkel)
5. Zylinderanzahl:	
6. Gesamt-Hubvolumen: V _H	[ccm]
7. Massenträgheitsmoment (Motor + Schwungrad): J	[kgm ²]
8. Gasdruckdiagramm:	
9. Notwendige Angaben / Regeln zur Auswahl der Kupplungsgröße:	
10. Zeichnung von Motorschwungrad und Motorgehäuse mit Lagekennzeichnung:	

Abtriebsseite:

- L. Art der Anwendung (Generator, Pumpe, Kompressor etc.):
- 2. Typ: ____
- 3. Massenträgheitsmoment: J _____ [kgm²]
- 4. Wellendurchmesser: d ______ [mm]
- 5. Wellenlänge: I [mm]
- 6. Zeichnung der Antriebsmaschine:

03/2020 RCT Produktkatalog |

SIMPLY **POWERFUL.**

Branchenlösungen:

Stromerzeugung

Mobile Anwendungen

Prüfstände

Pumpen & Kompressoren

Industrie

🕆 Schiffs- & Hafentechnik

Stammhaus:

Dipl.-Ing. Herwarth Reich GmbH Vierhausstraße 53 · 44807 Bochum

+49 234 959 16 - 0

😢 www.reich-kupplungen.com

Schutzvermerk ISO 16016 beachten

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet. Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmuster- oder Geschmacksmustereintragung vorbehalten. @ REICH - Dipl.- Ing. Herwarth Reich GmbH

Ausgabe März 2020

Mit dem Erscheinen dieses RCT-Kataloges verlieren vorhergehende RCT-Unterlagen teilweise ihre Gültigkeit. Alle Maßangaben in Millimeter. Maß- und Konstruktionsänderungen vorbehalten. Texte und Abbildungen, Maß- und Leistungsangaben sind mit größter Sorgfalt zusammengestellt worden. Eine Gewähr für die Richtigkeit kann jedoch nicht übernommen werden, insbesondere wird nicht garantiert, dass Produkte in Technologie, Farbe, Form und Ausstattung mit den Abbildungen übereinstimmen oder die Produkte den Größenverhältnissen der Abbildungen entsprechen. Ebenso sind Änderungen aufgrund von Druckfehlern oder Irrtümer vorbehalten.