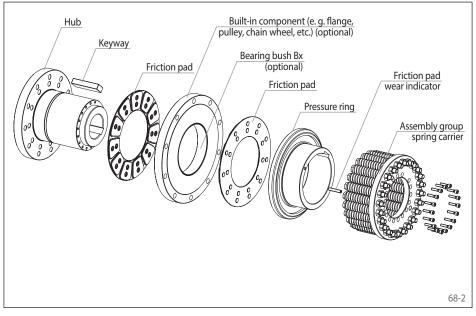
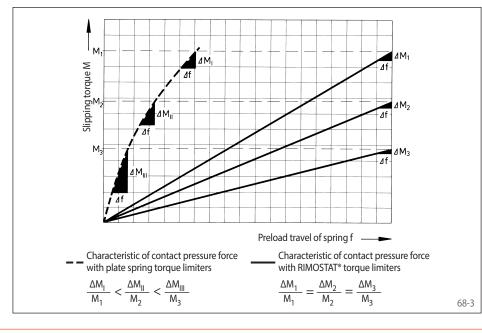
RIMOSTAT®-Torque Limiters RSHD

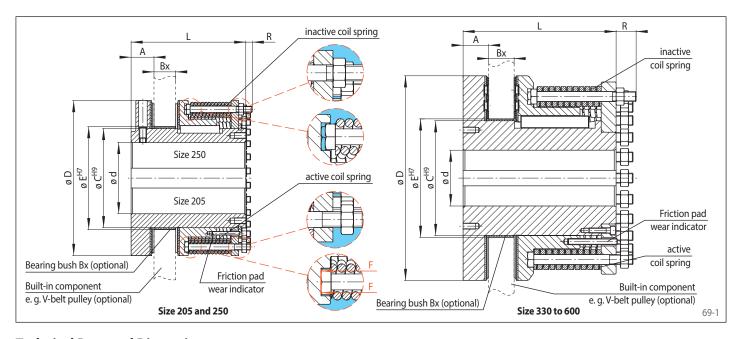

for heavy-duty applications


Features

- Better stability of slipping torque than Belleville spring torque limiters over duration of the operating period
- Adjustment of slipping torque setting according to the number of active springs – not through modification of spring pressure
- Superb wear-behaviour during high energy consumption
- High temperature resistant

The RIMOSTAT® Principle

The contact pressure on the friction surfaces is produced by long coil springs. Because of the RIMOSTAT® Torque Limiter's linear, flat-angle characteristic of the pressure force, practically no reduction of the slipping torque occurs even when friction linings are subjected to wear. As the diagram 68-3 shows, compared with Belleville spring torque limiters, assuming a friction wear of Δf the reduction of the slipping torque ΔM is negligible.


Function

- When the preset slipping torque has been reached the built-in component (e. g. v-belt pulley) slips.
- During the slipping process, input and output rotate relative to each other and the preset slipping torque continues to be transmitted.
- Inherent in the slipping process is a high energy consumption.
- Re-engagement is not necessary.
- No wear adjustment required due to coil springs.

RIMOSTAT®-Torque Limiters RSHD

RINGSPANN®

for heavy-duty applications

Technical Data and Dimensions

Туре	Slipping torque	Max. speed ¹⁾	Bore ²⁾ d ^{H7}		А	Вх	C ₃₎	D	E ⁴⁾	L	R ⁵⁾	Weight ⁶⁾
	Nm	min ⁻¹	min. mm	max. mm	mm	mm	mm	mm	mm	mm	mm	kg
RSHD 205	600 - 3 000	2700	50	90	29,9	28	125	205	131	160	10	26,6
RSHD 250	1200 - 6000	2100	55	115	36,9	35	160	250	166	185	10	46,5
RSHD 330	3000 - 14000	1800	90	125	41,3	41	185	330	191	247	30	103,0
RSHD 400	5 000 - 24 000	1 500	125	150	51,3	63	250	400	260	286	22	173,6
RSHD 500	8000 - 50000	1 200	150	200	56,3	63	350	500	360	275	48	292,0
RSHD 600	10 000 - 68 000	1000	150	300	66,3	63	450	600	460	298	35	510,5

¹⁾ The max. speed relates to the dimensional stability of the Torque Limiter. • 2) Further bores as well as internal spline available on request. • 3) Without a RINGSPANN bearing bush, the bore C must have a tolerance H9 and a surface finish of Rz ≤ 10. • 4) If the optional RINGSPANN bearing bush is used, the bore in the built-in component must be manufactured to tolerance H7. • 5) Dimension for inactive springs. • 6) Weight with smallest bore.

Keyway as per DIN 6885, page 1 · Tolerance of keyway width P9. Further designs available on request.

Supply

The Torque Limiters are supplied with inactive coil springs when fully equipped, without slipping torque setting and without bearing bush. An optical friction pad wear indicator is integrated. A factory slipping torque preset is only possible with a built-in component e. g. V-belt pulley.

Types (optional)

- Special bore designs on request
- · Design also for connecting two shaft ends
- · Can be combined with Flexible Couplings

Accessories

Torque Limiter RSHD is available with the following accessories:

- · Bearing bush Bx
- V-belt pulley
- Split V-belt pulley
- Built-in component as flange design

Please specify when ordering

- Type of Torque Limiter
- · Information of the bore
- · Bearing bush required: Yes / No
- Information on the built-in component, if applicable
- Specify slipping torque (torque setting only possible with built-in component)

RIMOSTAT®-Torque Limiter RSHD with Pin and Bush Coupling REB ... DCO

RIMOSTAT®-Torque Limiter RSHD for heavy-duty applications with V-belt pulley

The friction surfaces of the built-in component must have the total axial runout of \leq 0.05 to the bore and the surface quality of Rz12.