

for heavy duty and continuous operation with mechanical separating function

Issue 03/2022 • Technical details subject to change without notice.

RINGSPANN®

for heavy duty and continuous operation with mechanical separating function

Advantages

- Nominal torques up to 24405 Nm
- Wear-free operation
- Low noise

- Very high efficiency with low heat generation
- Integrated oil filtration system
- Oil change without downtime

Application as

Overrunning Clutch

for multi-motor drives in which a drive is automatically disengaged when it is no longer supplying power.

Features

Housing Freewheels FHD with hydrodynamic roller lift-off are typically used in cases where an assembly can be driven from two or more motors or turbines at the same or similar high speed. They allow a continuous plant operation in the event that one of the energy sources or a drive line fails as well as energy saving in the case of partial load operation. For safe system maintenance, the Housing Freewheels FHD are equipped with a mechanical separation function to decouple the input drive from the output drive train.

The Housing Freewheels FHD are completely enclosed freewheels for stationary arrangement with input and output shaft.

- Meets OSHA "Lockout-Tagout" requirements
- Dimensions correspond to those of the Housing Freewheels FH

Hydrodynamic roller lift-off

Housing Freewheels FHD are equipped with hydrodynamic roller lift-off. The hydrodynamic roller lift-off is the ideal solution for overrunning clutches at high speeds, not only in freewheeling operation, but also in the driving operation, as can occur, for example, in multimotor drives.

In the case of hydrodynamic roller lift-off, the lifting force is generated by an oil film applied during freewheeling operation by centrifugal force exerted on the outer ring race. This provides for practically wear-free freewheeling operation. The speed differential between the inner and outer rings is the decisive factor affecting the lift-off function. If the speed differential decreases, the lift-off force also decreases. Before achieving synchronous running, the clamping rollers guided in a cage are positioned with the aid of the central spring system against the outer ring race and are then ready to lock. This guarantees immediate torque transfer once the synchronous speed has been reached. The hydrodynamic roller lift-off enables a virtually wear-free freewheeling operation.

RINGSPANN[®]

for heavy duty and continuous operation with mechanical separating function

Areas of application

Housing Freewheels FHD as automatic clutches in multimotor drives fulfil here an important function. They disengage a drive automatically as soon as it no longer provides power to the working machine. The Housing Freewheels FHD do not require any external operating equipment.

Typical applications for multimotor drives are:

- Generators
- Pumps
- Ventilators
- Fans
- Uninterrupted power supply

Application example

Two Housing Freewheels are used in the multimotor drive of a fresh air fan. The fan is driven by one or two electric motors. The Housing Freewheels automatically engage the respective working electric motor to the fan. During service work, e.g. when repairing a drive, the Housing Freewheel mechanically separates the input drive from the output drive train.

Mechanical separating function

When the hand lever is actuated, the inner ring with the sprag roller freewheel (shown in red in figures 3-2 and 3-3) moves out of engagement with the outer ring. This mechanically separates the input drive from the output drive train. This separation can be seen through a view port.

Re-coupling of the input drive and output drive train is done by resetting the hand lever.

The respective position of the hand lever can be secured with a padlock. This fulfils the requirements for a Lockout-Tagout system.

Lockout-Tagout system

The Lockout-Tagout system serves the purpose of occupational safety. It allows all energies from equipment that may be dangerous to people to be isolated, locked out and tagged. This allows drive components to be serviced without interrupting production in accordance with OSHA 29 CFR 1910.147.

RINGSPANN[®]

for heavy duty and continuous operation with mechanical separating function

Selection torque for Housing Freewheels FHD

In many cases where overrunning clutches are being used, dynamic processes occur that cause high peak torques. In the case of overrunning clutches, the torques that occur during start up must be observed. The peak torques when starting up can, in the case of asynchronous motors - especially when accelerating large masses and when using elastic couplings - significantly exceed the torque calculated from the motor pullover torque. The conditions for internal combustion engines are similar. Even in normal operation, on account of their degree of irregularity, peak torques can occur that are way in excess of the nominal torque.

The prior determination of the maximum occurring torque is carried out most safely by using a rotational vibration analysis of the

entire system. This, however, requires a knowledge of the rotating masses, the rotational rigidity and all of the excitation moments that occur on the system. In many cases, a vibrational calculation is too time consuming or you may not have all the necessary data in the configuration phase available. In this case, the selection torque M_A of the overrunning clutch should be determined as follows:

 $M_A\,=\,K\cdot M_L$

In this equation:

- M_A = Selection torque of the freewheel
- K = Operating factor
- M_L = Load torque for constant rotating freewheel:
 - $= 9550 \cdot P_0/n_{FR}$

- $P_0 = Nominal power of motor [kW]$
- n_{FR} = Speed of the freewheel in driving operation [min⁻¹]

After calculating M_A the freewheel size must be selected in accordance with the catalogue tables in such a way that in all cases this applies:

 $M_N \ge M_A$

M_N = Nominal torque of the Housing Freewheel FHD in accordance with the table values [Nm]

The operating factor K depends on the properties of the driver and the machine. The general rules of mechanical engineering apply here. We recommend using an operating factor K of at least 1,5. We will be pleased to check your selection.

RINGSPANN®

33,00

636

for heavy duty and continuous operation with mechanical separating function

Overrunning Clutch			Type hydrodynamic roller lift-off				Dimensions														
		_																			
	Free	wheel iize	Туре	Nominal torque M _N	Max.s Output shaft overruns	peed Input shaft drives	Shaft d1 and d2	A	В	С	D	E	F	Н	J	К	0	Q	R	S	Weight
inch				lb-ft	min ⁻¹	min-1	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
	FHD	1000	R	1 000	5600	5600	1 3/4	12 ³ /4	12 ³ /4	3 ⁷ / ₁₆	16 ¹ /4	15 ¹ / ₁₀	13 ³ / ₁₀	12 ⁷ /8	17 ⁴⁸ / ₆₇	3 ⁷ /8	19 ⁵ /8	5 ³ /4	14 ¹ / ₂	^{11/} 16	231
	FHD	2000	R	2000	4200	4200	2 ⁵ / ₁₆	16 ³ /4	14 ³ /4	4 ¹ / ₄	18 ³ /4	12 ³ / ₅	14 ³ /4	15	20	4 ⁵ /8	23 ¹ / ₄	6 ⁷ /8	16 ¹ / ₂	11/16	355
	FHD	4000	R	4000	3600	3600	2 3/4	18	15 ¹ / ₂	5 ¹ / ₁₆	20	14 ^{2/5}	16	17 ¹ /8	21 ³⁵ / ₃₈	5 ³ /8	25 ⁵ /8	7 3/4	17 1/ ₂	11/16	496
	FHD	8000	R	8 0 0 0	3 0 0 0	3 0 0 0	3 ⁵ / ₁₆	17 ¹ / ₂	18 ¹ / ₄	5 ⁵ /8	21 ¹ / ₂	20 ³ / ₁₀	19 ³ / ₁₀	18 ¹⁵ / ₁₆	23 ⁷ / ₁₂	6 ¹ /8	29 ¹ / ₂	8 ⁵ /8	20 ¹ / ₂	¹³ / ₁₆	716
	FHD	12000	R	12000	2 500	2 5 0 0	3 ⁷ /8	18 ¹ / ₄	21 ¹ / ₂	6 ⁵ / ₁₆	22 ³ /4	15 ¹ / ₃	22 ¹ / ₆	20 ¹⁵ / ₁₆	25 ¹³ / ₃₀	6 ¹⁵ / ₁₆	34 ¹ /8	9 ⁵ /8	23 ³ /4	1 ¹ / ₁₆	926
	FHD	18000	R	18000	2 3 0 0	2300	4 ⁵ /16	20 ¹ / ₂	23 ¹ /4	7 5/16	26	24 ² /5	24 ⁸ /47	20 ⁵ /8	27 ²¹ / ₂₃	7 11/16	37 ⁷ /8	11 ¹ /4	25 ³ /4	1 5/16	1402
metric				Nm	min-1	min ⁻¹	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
	FHD	1 0 0 0	R	1356	5600	5 600	44,45	323,85	323,85	87,31	412,75	382,75	338,30	327,00	450,00	98,43	498,48	146,05	368,30	17,50	105
	FHD	2000	R	2712	4200	4 2 0 0	58,74	425,45	374,65	107,95	480,00	320,00	374,65	381,00	508,00	117,48	590,55	174,63	419,10	17,50	161
	FHD	4000	R	5423	3 600	3 600	69,85	457,20	393,70	128,59	508,00	344,80	404,50	435,00	556,80	136,53	650,88	196,85	444,50	17,50	225
	FHD	8000	R	10847	3000	3 000	84,14	444,50	463,55	142,87	546,00	516,00	490,00	481,00	599,00	155,58	749,30	219,08	520,00	21,00	325
		12000		16 270	2500	2500	00/2	162 55	54610	160 25	570 00	200 00	562 00	522.00	616 00	177.00	066 00	211 10	602 00	27.00	125

The maximum transmissible torque is 2 times the specified nominal torque. See page 14, catalogue, Freewheels" for determination of selection torque. Keyway according to USAS B17.1-1967

Mounting

FHD 18000

R

The Housing Freewheel must be mounted in such a way that shaft d1 is the input shaft and shaft d2 the output shaft.

24405

2300

We recommend the use of torsionally stiff shaft couplings generating only low reactive forces. On indication of the reactive forces that occur we are well prepared to check the usable life of the bearings installed.

Example for ordering

Prior to ordering, please complete the questionnaire on page 109, catalogue, "Freewheels" by specifying the direction of rotation in driving operation when viewed in direction X so that we can check the selection.

2300 109,54 520,70 590,55 185,74 660,00 620,00 614,00 600,00 709,00 195,26 962,00 285,75 654,00

Europe

Germany

RINGSPANN GmbH

Schaberweg 30-38, 61348 Bad Homburg, Germany +49 6172 2750 info@ringspann.de • www.ringspann.de

RINGSPANN RCS GmbH

Hans-Mess-Straße 7, 61440 Oberursel, Germany +49 6172 67 68 50 info@ringspann-rcs.de • www.ringspann-rcs.de

France

SIAM - RINGSPANN S.A. 23 rue Saint-Simon, 69009 Lyon, France +33 4 78 83 59 01 info@siam-ringspann.fr • www.ringspann.fr

Great Britain, Ireland

RINGSPANN (U.K.) LTD. 3, Napier Road, Bedford MK41 0QS, Great Britain +44 12 34 34 25 11 info@ringspann.co.uk • www.ringspann.co.uk

Italy

RINGSPANN Italia S.r.l. Via A.D. Sacharov, 13, 20812 Limbiate (MB), Italy +39 02 93 57 12 97 info@ringspann.it • www.ringspann.it

Asia

Australia, New Zealand

RINGSPANN Australia Pty Ltd Unit 5, 13A Elite Way, Carrum Downs Vic 3201, Australia • +61 3 9069 0566 info@ringspann.com.au • www.ringspann.com.au

China

RINGSPANN Power Transmission (Tianjin) Co., Ltd. No. 21 Gaoyan Rd., Binhai Science and Technology Park, Binhai Hi-Tech Industrial, Development Area, Tianjin, 300458, P.R. China • +86 22 5980 31 60 info.cn@ringspann.cn • www.ringspann.cn

America

Brazil

Antares Acoplamentos Ltda. Rua Evaristo de Antoni, 1222, Caxias do Sul, RS, CEP 95041-000, Brazil • +55 54 32 1868 00 vendas@antaresacoplamentos.com.br www.antaresacoplamentos.com.br

Netherlands, Belgium, Luxembourg **RINGSPANN Benelux B.V.**

Nieuwenkampsmaten 6-15, 7472 DE Goor, Netherlands • +31 547 26 13 55 info@ringspann.nl • www.ringspann.nl

Austria, Hungary, Slovenia

RINGSPANN Austria GmbH Triesterstraße 21, 2620 Neunkirchen, Austria +43 26 35 624 46 info@ringspann.at • www.ringspann.at

Poland

Radius-Radpol Wiecheć Sp.J. Ul. Pasjonatów 3, 62-070 Dabrowa, Poland +48 61 814 39 28 • info@radius-radpol.com.pl www.radius-radpol.com.pl

Romania, Bulgaria, Moldova

S.C. Industrial Seals and Rolls S.R.L. Str. Depozitelor, No. 29, 110078 Pitesti, Romania +4 0751 2282 28 mihai@isar.com.ro • www.isar.com.ro

Sweden, Finland, Denmark,

Norway, Baltic states **RINGSPANN Nordic AB** Flottiljgatan 69, 721 31 Västerås, Sweden +46 156 190 98 info@ringspann.se • www.ringspann.se

India, Bangladesh, Nepal

RINGSPANN Power Transmission India Pvt. Ltd. GAT No: 679/2/1, Village Kuruli, Taluka Khed, Chakan-Alandi Road, Pune - 410501, Maharashtra, India +91 21 35 67 75 00 • info@ringspann-india.com www.ringspann-india.com

Singapore, Taiwan, ASEAN

RINGSPANN Singapore Pte. Ltd. 143 Cecil Street, #17-03 GB Building, Singapore 069542 • +65 9633 6692 info@ringspann.sg • www.ringspann.sg

South Korea

RINGSPANN Korea Ltd.

33 Gojae-17 Ghil Dongnam-gu, 31187 Cheonan-si Chungnam, South Korea • + 82 10 54 961 368 info@ringspann.kr • www.ringspann.kr

Africa and Middle East

Egypt

Shofree Trading Co. 218 Emtedad Ramsis 2, 2775 Nasr City, Cairo, Egypt +20 2 2081 2057 info@shofree.com • www.ringspann.com

Iran

Persia Robot Machine Co. Ltd. 4th Floor, No 71, Mansour St, Motahari Avenue, Tehran 15957, Iran • +98 21 88 70 91 58 - 62 info@persiarobot.com • www.ringspann.com

USA, Canada, Mexico, Chile, Peru **RINGSPANN** Corporation

G.G. Yarom Rolling and Conveying Ltd.

noam_a@gg.co.il • www.ringspann.com

23 rue Saint-Simon, 69009 Lyon, France

info@siam-ringspann.fr • www.ringspann.fr

6, Hamaktesh Str., 58810 Holon, Israel

Maghreb, West Africa

SIAM - RINGSPANN S.A.

Israel

+972 3 557 01 15

+33 478 83 5901

10550 Anderson Place, Franklin Park, IL 60131, USA +1 847 678 35 81 info@ringspanncorp.com • www.ringspanncorp.com

South Africa, Sub-Saharan

RINGSPANN South Africa (Pty) Ltd. 96 Plane Road Spartan, Kempton Park, P.O. Box 8111 Edenglen 1613, South Africa +27 11 394 18 30

info@ringspann.co.za • www.ringspann.co.za

Switzerland **RINGSPANN AG**

Sumpfstrasse 7, P.O. Box, 6303 Zug, Switzerland • +41 41 7480900 info@ringspann.ch • www.ringspann.ch

Spain, Portugal

RINGSPANN IBERICA S.A. C/Uzbina, 24-Nave E1, 01015 Vitoria, Spain +34 945 2277-50 info@ringspann.es • www.ringspann.es

Czech Republic, Slovakia

Ing. Petr Scheibal Mezivrší 1444/27, 14700 Prag, Czech Republic +420 222 96 90 22 Petr.Schejbal@ringspann.cz • www.ringspann.com

Ukraine

"START-UP" LLC. Saltivske Hwy, 43, letter G-3, office 101, Kharkiv 61038, Ukraine • +38 057 717 03 04 start-up@start-up.kh.ua • www.start-up.kh.ua

INGSPANN